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easily studied if the parameters of the first wave are known. Fig.3 shows the wave pattern 

for such cases. 
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FORCED OSCILLATIONS IN IMPERFECT AND STATICALLY LOADED SHELLS* 

A.YU. POPOV 

The influence of small, non-axisymmetric imperfections in the middle 
surface and of a static load, on the amplitude of the forced oscillations 
of shells of revolution of zero curvature, is studied. For this puropse, 
shells acted upon by a mixed load, namely a static and dynamic load, are 
computed. The problem of a mixed load applied to an ideal shell is 
reduced to the problem of statics for a shell containing imperfections 
which vary with time. The amplitude-frequency relations are constructed 
for the flexure of statically loaded shells within the range of the lowest 
resonance frequencies. It is shown that in the case of statically loaded 
shells these relations differ essentially from those for load-free shells. 
The greatest increase in the amplitude of forced oscillations is observed 
in forms where the number of waves in parallel corresponds to the lowest 
frequencies. 

In investigating the influence of static loads or form imperfections on the dynamic 
behaviour of shells, the greatest attention has been given, as a rule, to the change in the 
resonance frequencies. In practice, it is essential to know the behaviour of the oscillation 
amplitude under static loads, or resulting from form imperfections, and this is important when 
studying the dynamic behaviour of loaded shells as a whole. 

One of the methods of solving the problem of the statics or dynamics of imperfect shells 
is based on the introduction of irregularity parameters into the initial system of equations. 
A linear system of equations is chosen as the initial system. The small-parameter method is 
then used, just as was done in problems of the statics of imperfect shells /l-3/. The same 
approach can be used in the problem of shells under a mixed load, and such a problem has 
been studied experimentally**.(**Solodilov V.E. Study of the natural oscillations of shells 
using holographic interferometry. Candidate Dissertation, Moscow, Inst. problem mechaniki, 
Akad. Nauk SSSR, 1980). 

Let us considerthe forced oscillations of a shell of revolution with an imperfect middle 
surface, excited by an axisymmetric harmonic load. We shall describe the imperfections in 
the middle surface of the shell using functions of the type UQ,= ET(Z)COS~~~ where UI~ is the 
initial sag, z is the meridianal coordinate, v is the circular coordinate, m is the number 
of waves in parallel, and E is a number, small compared with the relative thickness of the 
shell. We shall write the coefficients of the solution of the system of equations describing 
the forced oscillations of an arbitrary shall, in the form of series in powers of the small 
parameter e. After substituting the coefficients and the solution into the initial system, 
the latter splits into several subsystems. The zeroth approximation corresponds to the 
problem of the forced oscillations of a perfect shell of revolution. Every subsequent 
approximation is constructed by integrating the system of equations for the perfect shell of 
revolution, with various right-hand sides in the equations of equilibrium as well as in the 
geometrical relations. Thus the analysis of a shell with small, non-axisymmetric imperfections, 
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reduces to a numer of calculations of a perfect shell. 
Confining ourselves to terms that are linear in F, we obtain two dependent systems of 

equations. When the shell is conical, the second system of equations for constructing the 
first approximation has the form 

L$ (Tj', S’, Nj’, Gj*, Rx) = Zj (1) 
i = i, 2, . ..,5; j = I, 2 
21 = sin a (r sin cz + RF’ cos a) -$& - (r’R - p sida) (?‘,a - T#) - 

dP 
cosa a r N,O 

are the equations of equilibrium, (Li are the known operators of the equations of equilibrium 
of the shells, /4/ Zi are the right-hand sides of the equations of equilibrium representing 
the load), and 

r sin 3a)/R 

are geometrical relations. 
The deviation from axial symmetry was specified by the variable distance a between the 

axis of revolution and the middle surface of the shell 

(I = R (1 5 w,,), R = R, (i + r tg a) (3) 

Here R,, a is the radius of the smaller face and half-angle of the cone, and ui, W, s;,o, 
yj,xj,r, Tj, S, Nj, Gj are the displacements, deformation and force factors in the notation of /4/. 
The superscript indicates the zeroth or the first approximation. The deformations and angles 
of rotation without a superscript are known geometrical relations resulting from the non- 
axisymmetric force load Zi. The elasticity relations are not given here, since they also 
remain homogeneous to a first approximation. We note that when a=O, the system (l)-(3) 
holds for a cylindrical shell. The above system of equations was integrated using Godunov's 
method. 

We studied the forced oscillations of a cylindrical shell with initial sag of the form 
(3) - The shell dimensions were: thickness h = 0.5 mm, radius R, = 100 mm, and length L = 400 mm. 
The intial sag along the meridian was of the form T(Z) = sin AL. A uniform external pressure g 
was chosen as the load, harmonic with respect to time Q= qae’o’, q,l(2E)= 3.75.10-6 (E is Young's 
modulus and o is the angular frequency of oscillations). The shell edges were assumed clamped, 
and oscillations of frequency f= o/(2%)=483 Hz were studied. This frequency is close to the 
lowest characteristic frequency ofthe shell to which the form with m= 5 waves in parallel 
corresponds. 

Fig.1 Fig.2 
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Various forms of imperfections of the type (31, obtained by varying m from 2 to 10, were 
studied, and the magnitude of the small parameter was assumed to be e= h/(4&,). Fig.1 shows 
the dependence ofthelargest values of the flexure amplitude 1~ (the dashed line) and the 
stress amplitucles(the solid lines) on m. Curve 1 corresponds to the stresses caused by 
tangential forces, and curve 2 to the stresses due to the moments. The effect of the imperfec- 
tions with m=2,3,4 waves along the parallel is relatively weak. The imperfections with 
m=5 waves along the parallel show a substantial influence on the displacements and on the 
stress-deformation state of the shell, The displacements in the imperfect shell exceed those 
of the perfect shell by two orders of magnitude, and the stresses due to moments exceed those 
caused by tangential forces. The effect of the imperfections becomes gradually weaker as m 
increases, although it still remains considerable. The qualitative nature of the results 
shown in Fig.1 should be noted, especially that with rn= 5,where the frequency of the load 
responsible for the forced oscillations is close to the characteristic frequency of the perfect 
shell. 

We have also studied the forced oscillations of perfect, statically loaded shells. The 
static load was axisymmetric. The dynamic load leads to non-axisymmetric flexures, which in 
this case play the part of imperfections. The imperfections vary with time and represent a 
type of forced oscillations of a perfect shell, i.e (3) zu* will represent the form of the 
forced oscillations of the perfect shell. Then the problem of forced oscillations of a perfect, 
statically loaded shell, can be considered as a problem of statics for the shells with 
imperfections varying with time. 

Let us apply the method of expansion in terms of a small parameter to this problem. We 
choose, as the small parameter, the maximum value of the flexure amplitude of a perfect shell. 
Then the zeroth-order approximation will be obtained by solving the axisymmetric problem of 
statics for a perfect shell. The first-order approximation will be determined by two terms. 
The first term will represent the solution of the non-axisymmetric problem of the forced 
oscillations of a perfect shell under a real dynamic load. The second term will be character- 
ized by the interaction of the statics and dynamics, and will be constructed by solving these 
problems, with the right-hand sides of the first-order approximation playing the part of the 
load. 

The general solution written e.g. for the flexure w in the problem of forced oscillations 
of a perfect shell under a static load, has the form 

"=w*+[rtr,+w,le'f'tp+ot) (4) 
where 10 is the total flexure, ut, is the flexure in the axisymmetric problem of statics for 
a perfect shell, W, is the form of the oscillations of a perfect shell under a dynamic load, 
and W. is the solution of the problem of statics for a shell with dynamic imperfections, i.e. 
the solution of the system cl),. (2). 

It should be noted that "D% is small compared with the shell thickness. This means that 
the method cannot be used near the resonance where ZP* is large, and expansion in terms of a 
small parameter cannot be carried out. 

We have studied the behaviour of the clamped cylindrical shell mentioned above, acted 
upon by a mixed load. The static load consisted of a uniform axisymmetric pressure 9,lPR) = 
3.75.10+, and the dynamic load was 

,7 = 0.01 (i - z*)* (0, 236 + 0.49lr + 0.656 z?') q,, eitmfrtot) 

where CZ= dR,,m=4,5,6,i.e. we studied the oscillations in the region of lower characteristic 
frequencies. Fig.2 shows amplitude-frequency graphs for the flexure ID of the shell for 
m=4,5,6. The solid line refers to the dynamic load only, and the dashed lines to the mixed 
loads. The numbers 1, 2, 3 correspond to m =4,5,6. In the case of a shell under a mixed 
load, the above relations are constructed away from resonance, so that the quantity w, is 
small compared with the shell thickness. 

We see from the graphs that the relations constructed for q=O and q#O differ sub- 
stantially from each other. Computations have shown that a uniform static load appreciably 
increases the dynamic oscillations of the shell at harmonics m=4,5,6. The greatest effect 
was observed in oscillations with m=5,6 waves along a parallel. The lowest characteristic 
frequency of the shell corresponds to the form of the oscillations with m = 5. Therefore the 
greatest increase in the flexure amplitude was observed when the form of the forced oscillations 
correspondedtothe characteristic frequency of the shell. In the case of oscillations with 
m=5,6, the flexure amplitude exceeded the flexure caused by a purely dynamic load, by an 
order of magnitude. 

The method of holographic interferometry (see the footnote) was used to study the behaviour 
of a perfect truncated conical shell acted upon by an axisymmetric compressive force and a 
dynamic, non-axisymmetric load. It was found that the magnitude of the flexure amplitude in 
the resonance forms depends essentially on the magnitude of the static load, practically from 
the instant the load is applied. When the compressive force was increased, the oscillation 
amplitudes increased appreciably, although the dynamic load remained constant. In the initial 
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loading stages the dependence of the flexure amplitude on the compressive force was practically 
linear, and this confirms the linear dependence of the approximate solution obtained on the 
static load in formula (4). 

It was precisely such a shell that was investigated. Its dimensions were: thickness 
11 =: 0.7 mm, half-angle a = 1&S', length of the axis of revolution L= 104 mm. and the radius of 
the smaller face R,= 40 mm. The shell was clamped by its larger face, and the smaller face 
was joined to a prefectly rigid nut. 

The table below shows the characteristic frequencies in Hz obtained numerically for 
various values of m and n, (n is the number of the frequency for fixed m). The values obtained 
agree almost exactly with those obtained by Solodilov. 

Next, forced oscillations of the same shell were studied under a static load. The static 
load was represented by a compressive force acting on the smaller face through the rigid nut. 
The dynamic load remained the same as in the case of the cylindrical shell. 

Table 

k 298% 8315 2577 4637 2619 4422 2965 4460 

The dependence of the total flexure on the compressive force was investigated. i%?hen 
only the first-order approximation is taken into account, the dependence is linear. Using 
the same static load in all cases, we studied various types of dynamic load differing from 
each other by the number m and the frequency. The frequency was chosen as before, as close 
to the natural frequency as was allowed by the method of expansion in terms of the small 
parameter. The greatest increase in the flexure was observed at the first frequencies (n-=1) 
with m=5 waves along the parallel, and at the second frequencies (n= 2) with m=6. Accord- 
ing to the table the oscillations correspond to the smaller natural frequencies for every 
value of n. 

Thus the static load exerts the greatest influence on the amplitude of forced oscillations 
in the case when the frequency of the forcing dynamic load is close to the lower character- 
istic frequency of the shell for every value of R. This agrees well with experimental results. 

The results obtained show that, in a number of cases, the static load exerts a substantial 
influence on the amplitude of the forced oscillationsofthe shell. This confirms the fairly 
high sensitivity of the amplitude-frequency relations of shells of zero curvature towards 
static loads, and this property can be made use of in various technical applications. 
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